OSTEOCHONDRAL GRAFTING

WHO,WHEN,WHERE,WHY,& HOW

Ralph A. Gambardella, MD Professor of Orthopaedics Cedars-Sinai Kerlan-Jobe Institute Los Angeles, California

 $CEDARS\text{-}SINAI_{*}$

KERLAN-JOBE INSTITUTE

1/5/20

Presentation Goals

Review of Clinical History
Review of Bioengineering History
Review of Surgical Technique

Treatment Options

Surgical Options

- Lavage, debridement
- Drilling, abrasion, microfracture
- Osteochondral autograft
- Chondrocyte Implantation
- Osteochondral allograft

WHO?

- NO age limit
- Generally under the age of 50 years
- Focal, full thickness articular cartilage defects

WHEN?

- Most often after failed debridement and or microfracture
- Appropriate as the initial surgical treatment of focal full thickness lesions

WHEN?

- Defect size variable in the literature
 - One cm
 - Five cm
- Literature supports best results in young
- Femoral Condyle> Trochlea> Patella

WHEN?

- Osteochondritis Dissecans
- More Controversial
 - Osteonecrosis
 - Osteoarthritis

WHERE ?

ANYWHERE

WHERE ?

Knee
Ankle
Shoulder
Hip

Osteochondral Autografts

- Non-inflammatory healing response
- Fill defects with osteochondral bone graft
- Favorable results at 7-10 years
- Immediate access to graft
- Minimally-invasive procedure

WHY?

CLINICAL STUDIES

Autograft Development

- Open mosaicplasty
 Hangody
- Open/arthroscopic OATS
 Bobic
- Open/arthroscopic COR
 Barber-Chow

Bobic (1995)

- Condyle lesion with ACL injury
- Arthroscopic technique with ACL reconstruction
- 29 patients with >1cm lesion
- 19/22 excellent results @ 2-3 year followup
- Hyaline cartilage biopsy specimens

Hangody (1997)

- Preliminary report
- 44 patients
- Open technique with autograft
- HSS score
 - Pre: 62
 - Post: 94

Hangody Results

- Multicenter prospective study
- 417 patients
- 1992 to 1996
- Arthroscopic technique
- Femoral condyle lesions

Post-op Improvement Modified Cincinnati Knee Score

	1 year	3 year	5 year
Abrasion	58 %	28 %	0 %
Microfracture	57 %	33 %	34 %
Drilling	21 %	33 %	34 %
Mosaicplasty	89 %	88 %	87 %

- 831 Patients
- Up to 10 year follow-up
- Good to excellent results:
 - 92% Femoral
 - 87% Tibial
 - 79% Trochlear and Patellar
 - 94% Talar Dome

- 3% morbidity
- 69 of 83 second look arthroscopy with congruent surface and viable chondrocytes with histology

- Histologic evidence of long term graft survival
- Fibrocartilage filling of donor sites

- Recommendations
 - Defects 1-4 square cms. in size
 - Attention to detail in technique
 - Upper limit age of 50 yrs

Horas et al 2003 JBJS Autograft vs. ACI

- Prospective, randomized
- 40 pts
- Mean 3.75cm
- Both groups improved at 2 yrs
- ACI progress was slower

Bentley et al 2003 JBJS Autograft vs. ACI

- Prospective, randomized
- 100 pts
- Mean 4.66 cm
- Mean f/u 19 months
- ACI superior outcomes 88% vs 66%

Marcacci 2005 Arthoscopy

- 37 patients in a prospective study
- 2 year f/u
- 78 % good to excellent using ICRS Score
- Young patients and LFC lesions did the best

Gudas et al 2006 Knee Surg Sports **Autograft vs Microfracture vs Debridement**

- A series of elite athletes
- 82% return to same level sport
- With ACL autograft showed quickest return
- 10 yr f/u:
 - 75% with autograft still active
 - 37% with microfracture still active

Krych et al JBJS 2012

Activity Level vs. Microfracture

- 96 patients: 48 osteochondral/48 microfracture
- 5 year f/u
- 2.65cm square defect size
- Equal outcomes scores: SF 36, IKDC
- Improved acivity level with osteochondral grafting using Marx activity scoring system

Patel and Tapasvi 2015 Current Review Musculoskelet Med

- 20 patients
- Defect 5-12 mm, 17/20 were condylar
- Mean f/u 42 months
- IKDC subjective score 81.6
- 1 yr f/u MOCART all had bone healing

WHY?

BASIC SCIENCE STUDIES

Bioengineering Concerns

- Proud Plug
 - Sees increased joint load
 - Progressive loss of surface
 - Damage to opposing surface
- Recessed Plug
 - Sees decreased joint load
 - Integration of soft fibrous tissue
 - Decreased nutrition (fluid bone)

Topographic Matching for Osteochondral Grafting Bartz et al AOSSM March 2001

Loadbearing condylar recipient sites

- Most medial or lateral patellar groove donors are best
- Most inferior groove donor site provides best match
- Intercondylar notch donor sites
 - Accurate surface restoration for 4-6mm defects
 - Inadequate surface restoration for >8mm defects

Topographic Considerations Osteochondral Grafting Ahmad et al AOSSM March 2001

- Donor Sites
 - Medial trochlea, lateral trochlea, intercondylar notch
 - Small nonloading region
 - Similar cartilage thickness (2.1mm ave.)
- Recipient Sites
 - Lateral and medial trochlea curvature best match for femoral condyles
 - Intercondylar notch curvature best match for central trochlea
 - Cartilage thickness (2.5mm ave.)

Cole 2002 AOSSM

- Contact pressure at donor site of patellofemoral joint
- Pressure is not uniform
- Pressure is higher on the lateral condyle
- Harvest grafts from medial condyle

Koh 2002 AOSSM

- Graft height mismatch
- Small incongruities lead to significantly elevated contact pressures
 - 0.5mm proud worse than 0.5mm sunk

Burks 2002 AOSSM

- Pressure changes from defects in femoral condyle
- 15mm diameter leads to 150% increase in pressure transference to normal cartilage

Bioengineering Concerns Evans 2004 Arthroscopy

Manual versus Power Punch for Harvest
Chondrocyte viability better with the use of a manual punch

Bioengineering Concerns Lane 2004 AJSM

- Goat 6 Month Study
- Cleft between host and transferred region remains

Bioengineering Concerns Huntley 2005 JBJS

Chondrocyte Death From Graft Harvesting

- Fresh human tissue
- Confocal microscopy
 - Central 99 % viable
 - 382 micron margin of cell death
 - No change in 2 hours

Bioengineering Concerns Epstein et al Arthroscopy 2012

- Cadaveric study of harvesting grafts
- Mini-open vs. arthroscopic
- MSR best harvested open to obtain a perpendicular graft for implantation
- LSR mini vs arthroscopic no difference in graft perpendicularity

Patil et al 2008 AJSM Insertion Force and Chondrocyte Viability

- 8mm diameter autografts
- Force < 400N
- Good cell viability
- Several low impact blows lesss damaging by a few higher impact blows

Autograft Systems

COROATSMosaicplasty

Cartilage Repair System

NEW GENERATION IN OSTEOCHONDRAL TRANSPLANTATION

Improved Accuracy

Reproducible and focused graft harvest and drilling with a first-of-kind perpendicularity device

Protecting Chondrocyte Viability

"No impact transfer" & "Low impact delivery"

Ease of Use

Intuitive handling and efficiency combined in a completely disposable system

Improved Accuracy

Harvester and Drill Guide w/ Perpendicularity

Jnderscores Graft

Improved Drill Bits 5mm-20mm

Spade Cutting Tip

8 mm Drill Guide

8 mm Drill Guide

- Single Use guarantees sharp tip
- Minimizes tip wandering and cartilage damage

Fluted Channels

- Reduces drilling force by removing bone
- Reduces friction and heat that may cause cell damage

Protects Chondrocyte Viability Protecting Chondrocyte Viability with <u>"No Impact</u> <u>Transfer"</u>

Harvester/Delivery Guide Cutter

<u>Interface</u>

- Preloaded System
- Cutter protects and stores plug outside the guide tube until ready for transfer

No contact with cartilage surface at any time

DePuy Mibah

Graft Loader

- No impact on cartilage surface
- Single step
- Loads plug with minimal force on cancellous bone

Ease of Use

COR Precision Targeting... Easy to Use System

INTUITIVE HANDLING – Easily identified components – labeled and color coded

EFFICIENCY – Complete disposable system always available, no missing parts, no sterilization

ARTHREX OATS SYSTEM

10

Do not advance the harvester into the socket past the blue line at the tip of the Delivery Tube.

Technique Keys

- Perpendicular graft insertion
- Joint congruity restoration
- < 400 N force insertion
- Flush or < 2mm recessed

THE FUTURE

Synthetic Osteochondral Grafting TruFitTM

Preparation of Recipient Site

2007 ICRS WARSAW Cartilage Repair with TruFit CB Plug 8 patients Spaulding, et.al.

- 8 patients
- Failed debridement or microfracture
- IKDC from 44.6 to 79
- 8 month f/u

2007 ICRS WARSAW TruFit Early Results

Sciarretta, et.al.

- 15 patients
- 11 mm plugs
- Early improvement with IKDC scoring

Verhaegen et al Tru Fit Plug Systematic Review of Literature Cartilage 2015

- 5 clinical studies reviewed
- NO data to support superiority or equality compared to conservative treatment including microfracture

CONCLUSIONS

graft insertion

Indications

Contained lesion
1cm to 3cm defects
Normal mechanical alignment
No kissing lesions

Contraindications

- Osteoarthritis
- Instability
- Patellar maltracking
- Mechanical malalignment

Technique Keys

- Perpendicular graft insertion
- Joint congruity restoration
- < 400 N force insertion
- Flush or < 2mm recessed

Ideal Cartilage Scaffold

- Synthetic and biodegradable
- Designed to match the physical and mechanical properties of the recipient tissue
- Integrates to reproduce the native properties of articular cartilage
 - Biomechanical
 - Histological
 - Biochemical
- Safe, effective and durable results
 - IKDC, Cincinnati, KOOS or other validated measures
 - MRI and/or similar quantitative assessments
 - Minimal adverse events, reoperations and failures

THANK YOU

CEDARS-SINAL®

KERLAN-JOBE INSTITUTE

FUTURE NEEDS

 More clinical studies • Long term • MRI evaluations • Bone scan evaluations Ultrasound evaluations Computerized mapping techniques

FUTURE NEEDS

• More basic science studies -Stiffness and biomechanical studies -Edge integration studies -Plug depth and Press-fit stability -Pulsed Electromagnetic field studies

Krych et al 2012 JBJS Autograft vs. Microfracture

- 96 pts
- 1-6 cm with 2.65 cm mean
- Autograft patients with superior outcome to microfracture